Ученые создали бота, способного устанавливать подлинность сертификатов о вакцинации против коронавируса.
Специалисты международного Института инженерии и технологий (Institute of Engineering and Technology, IET)
Для обучения своей модели специалисты использовали большое количество изображений сертификатов (как подлинных, так и поддельных), выданных в Великобритании, США, Китае, Индии, Дубае и Японии. Для начала с помощью локальных бинарных шаблонов исследователи убрали с сертификатов весь «шум», после чего извлекли из него ключевые элементы, такие как логотип, символы, слова и параметр crest-rough для подписи и печати. Далее с помощью сверточной нейронной сети DenseNet201 они смогли определять подлинность сертификатов.
В функциональный блок бота специалисты включили модель глубокого обучения, разработанную с использованием Python в Google Collaboratory, и следующее аппаратное обеспечение: процессор Intel Core i9-10,980HK, графический процессор Nvidia RTX 3080, RAM 32 ГБ и хранилище на 21 ТБ.
По словам исследователей, представленная ими модель с точностью 0,94 превосходит современные модели, включая SVM, RNN, VGG16, Alexnet и CNN, по таким показателям производительности, как точность, специфичность, чувствительность, скорость обнаружения, полнота, F1-мера и время вычислений.
Специалисты международного Института инженерии и технологий (Institute of Engineering and Technology, IET)
Для просмотра ссылки необходимо нажать
Вход или Регистрация
исследование, посвященное выявлению поддельных сертификатов о вакцинации против COVID-19 с помощью ботов на базе технологий искусственного интеллекта (ИИ) и глубокого обучения. Их целью было создать бота на языке программирования Python, в который можно было бы просто загрузить сертификат, чтобы проверить, поддельный он или нет.Для обучения своей модели специалисты использовали большое количество изображений сертификатов (как подлинных, так и поддельных), выданных в Великобритании, США, Китае, Индии, Дубае и Японии. Для начала с помощью локальных бинарных шаблонов исследователи убрали с сертификатов весь «шум», после чего извлекли из него ключевые элементы, такие как логотип, символы, слова и параметр crest-rough для подписи и печати. Далее с помощью сверточной нейронной сети DenseNet201 они смогли определять подлинность сертификатов.
В функциональный блок бота специалисты включили модель глубокого обучения, разработанную с использованием Python в Google Collaboratory, и следующее аппаратное обеспечение: процессор Intel Core i9-10,980HK, графический процессор Nvidia RTX 3080, RAM 32 ГБ и хранилище на 21 ТБ.
По словам исследователей, представленная ими модель с точностью 0,94 превосходит современные модели, включая SVM, RNN, VGG16, Alexnet и CNN, по таким показателям производительности, как точность, специфичность, чувствительность, скорость обнаружения, полнота, F1-мера и время вычислений.
Для просмотра ссылки необходимо нажать
Вход или Регистрация