Исследователям из Иллинойского университета (UIUC) удалось повысить эффективность автономных ИИ-взломщиков, использующих уязвимости нулевого дня, сгруппировав их и распределив роли.
Созданный с этой целью многоагентный фреймворк получил имя HPTSA. Ранее та же команда исследователей доказала, что боты на основе больших языковых моделей (БЯМ, LLM) могут автономно находить уязвимости и эксплуатировать их с успехом до 87%. Кроме того, недавно мы рассказывали об уязвимостях и рисках, связанных с большими языковыми моделями.
Однако, действуя в одиночку, такие взломщики тратят много времени на поиск лазеек и планирование атак; объединив их усилия по методу HPTSA (PDF), можно улучшить производительность в 4,5 раза. Новый эксперимент был поставлен с использованием таких же ботов — на основе GPT-4.
Во главе выстроенной иерархии стоял агент-планировщик, который проверял страницы сайта (реального, но с возможностью эксплойта в сэндбокс-окружении, чтобы пользователи не пострадали) и передавал результат агенту-менеджеру. Этот тимлидер направлял «заказ» нужному исполнителю, и тот уже применял эксплойт.
Все ИИ-агенты имели доступ к стимулу-подсказке, инструментам (Microsoft.Playwright для доступа к сайтам, терминал Windows, средства управления файлами) и документам (описания незакрытых уязвимостей, собранные из открытых источников; на самостоятельный поиск был введен запрет).
Для тестирования исследователи создали новый набор из 15 уязвимостей разной степени опасности в opensource-софте. В итоге HPTSA показал результативность до 53%, превзойдя результаты одиночного GPT-4 с доступом к информации о дырах в 1,4 раза, без доступа — в 4,5 раза. Сканеры уязвимостей ZAP и MetaSploit все тесты провалили.
Созданный с этой целью многоагентный фреймворк получил имя HPTSA. Ранее та же команда исследователей доказала, что боты на основе больших языковых моделей (БЯМ, LLM) могут автономно находить уязвимости и эксплуатировать их с успехом до 87%. Кроме того, недавно мы рассказывали об уязвимостях и рисках, связанных с большими языковыми моделями.
Однако, действуя в одиночку, такие взломщики тратят много времени на поиск лазеек и планирование атак; объединив их усилия по методу HPTSA (PDF), можно улучшить производительность в 4,5 раза. Новый эксперимент был поставлен с использованием таких же ботов — на основе GPT-4.
Во главе выстроенной иерархии стоял агент-планировщик, который проверял страницы сайта (реального, но с возможностью эксплойта в сэндбокс-окружении, чтобы пользователи не пострадали) и передавал результат агенту-менеджеру. Этот тимлидер направлял «заказ» нужному исполнителю, и тот уже применял эксплойт.
Все ИИ-агенты имели доступ к стимулу-подсказке, инструментам (Microsoft.Playwright для доступа к сайтам, терминал Windows, средства управления файлами) и документам (описания незакрытых уязвимостей, собранные из открытых источников; на самостоятельный поиск был введен запрет).
Для тестирования исследователи создали новый набор из 15 уязвимостей разной степени опасности в opensource-софте. В итоге HPTSA показал результативность до 53%, превзойдя результаты одиночного GPT-4 с доступом к информации о дырах в 1,4 раза, без доступа — в 4,5 раза. Сканеры уязвимостей ZAP и MetaSploit все тесты провалили.
«Уже сейчас ИИ используется как черными, так и белыми хакерами, — комментирует Вадим Матвиенко, руководитель лаборатории исследований кибербезопасности аналитического центра «Газинформсервиса». — Поэтому важно быть готовыми быстро реагировать на новые угрозы. В этой задаче помогают системы выявления аномалий на основе машинного обучения».
Для просмотра ссылки необходимо нажать
Вход или Регистрация